Abstract

Large plastic strains between 1 and 15 can be imposed in chips formed by plane-strain (2-D) machining of metals and alloys. This approach has been used to examine microstructure changes induced by large strain deformation in model systems—copper and its alloys, precipitation-hardenable aluminum alloys, high-strength materials such as titanium, Inconel 718 and 52100 steel, and an amorphous alloy. It is shown that materials with average grain sizes in the range of 60 nm–1 μm can be created by varying the parameters of machining, which in turn affects the deformation processes. Furthermore, a switch-over from an elongated subgrain microstructure to an equi-axed nanocrystalline microstructure, with a preponderance of large-angle grain boundaries, has been demonstrated at the higher levels of strain in several of these materials. This switch-over can be readily controlled by varying the deformation conditions. Dynamic recrystallization has been demonstrated in select material systems under particular conditions of strain and temperature. This study may be seen as providing an important bridge between furthering the understanding of microstructural refinement by large strain deformation and the practical utilization of nanostructured materials in structural and mechanical applications. Conventional plane-strain machining has been shown to be a viable SPD method for examining the underlying processes of very large strain deformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.