Abstract

Static restoration mechanisms operating during annealing were studied in a 304 steel with strain-induced submicron grain structures. The initial microstructure with an average grain size of about 0.3 μm was developed by large strain deformation at 873 K. Early annealing leads to a full relaxation of high internal stresses associated with non-equilibrium strain-induced grain boundaries, while their boundary misorientations and the average grain size barely change. Further annealing results in a transient recrystallization followed by a normal grain growth. The average grain boundary misorientation increases up to around 45° in the former and becomes constant in the latter. This is associated with the change in the grain boundary misorientation distribution from a characteristic strain-induced one to a near random distribution corresponding to a fully recrystallized state. The annealing processes operating in the strain-induced fine grains take place homogeneously in the whole matrix and can be called continuous recrystallization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.