Abstract

BackgroundSkeletal muscle ischemia-reperfusion injuries result in a loss of contractile function, leading to limb disability or amputation. Ischemia causes hypoxia and cellular energy failure, which is aggravated by reperfusion due to the inflammatory response and oxidative stress. The consequences of the injury vary according to the duration of the period of ischemia and reperfusion. Therefore, the present work aims to evaluate ischemia-reperfusion injuries induced in the skeletal muscles of Wistar rats submitted to 3 different application periods based on morphological and biochemical parameters. MethodsFor this, a tourniquet was applied to the root of the animals’ hind limbs, occluding arterial and venous blood flow, and it was followed by reperfusion—the removal of the tourniquet. The groups were: control (without tourniquet); I30'/R60' (30 minutes of ischemia and 1 hour of reperfusion); I120'/R120' (2 hours and 2 hours); and I180'/R180' (3 hours and 3 hours). ResultsAll ischemia-reperfusion groups showed characteristics of muscle injury. Microscopic analyses of the extensor digitorum longus, soleus, tibialis anterior, and gastrocnemius muscles showed a significant increase in the number of injured muscle fibers in the ischemia-reperfusion groups compared to the control group. There were also significant differences between the ischemia-reperfusion groups in all muscles, showing a progressive increase in the degree of injury. The quantification of the number of injured muscle fibers between the muscles revealed that at I30'/R60', the soleus muscles had a higher number of injuries in relation to the other muscles, with statistical significance. In the I120'/R120' group, the gastrocnemius muscles presented a significantly greater number of injured fibers. There were no significant differences in the I180'/R180' group. The serum levels of creatine kinase in the I180'/R180' group were significantly higher than in the control and I30'/R60' groups. ConclusionsTherefore, it was evident that the 3 ischemia-reperfusion models used were capable of causing cell damage, with these findings being more pronounced in the I180'/R180' group.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.