Abstract

The lower extremity is the most frequently injured body region to mounted soldiers during underbody blast (UBB) events. UBB events often produce large deformations of the floor and subsequent acceleration of the lower limb that are not sufficiently mitigated by the combat boot, leaving the calcaneus bone vulnerable to injury. Biomechanical experiments simulating UBB loading scenarios were conducted in a laboratory environment using isolated postmortem human subject (PMHS) leg components. Each leg component was tested twice: one sub-injurious test followed by a injury-targeted test. This enabled the use of interval censoring for each specimen in the survival statistical analysis to generate the human injury probability curves (HIPCs). Foot contact forces were measured in both the hindfoot and forefoot. Strains and acoustic emission signals at the calcaneus and distal tibia were utilized to determine injury timing. The footplate velocities of the injury tests ranged 8-13 m/s with time-to-peak velocity of 1.8-2.5 ms while the velocities of non-injury tests ranged from 4 to 6 m/s with the same time-to-peak. The majority of the injuries were severe calcaneus fractures (Sanders III-IV). Secondary injuries included fractures to the distal tibia, talus, cuboid and cuneiform. These injury outcomes were found to be consistent with those reported in UBB injury literature. The HIPCs for the severe calcaneus fracture were developed using the vertical heel contact force as the injury correlation measure through survival analysis statistical method in the form of lognormal function. This work represents the first set of HIPCs dedicated to the severe calcaneus fracture using the biomechanical force measurement closest to the injury location. This injury probability curve will enable biomechanical response validation of computational models, development of ATD injury assessment reference curve, and injury prediction capability for computational models or ATDs in the UBB environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call