Abstract

By adding force gradient operators to symmetric compositions, we build a set of explicit fourth-order force gradient symplectic algorithms, including those of Chin and coworkers, for a separable Hamiltonian system with quadratic kinetic energy T and potential energy V. They are extended to solve a gravitational n-body Hamiltonian system that can be split into a Keplerian part H0 and a perturbation part H1 in Jacobi coordinates. It is found that the accuracy of each gradient scheme is greatly superior to that of the standard fourth-order Forest–Ruth symplectic integrator in T + V-type Hamiltonian decomposition, but they are both almost equivalent in the mean longitude and the relative position for H0 + H1-type decomposition. At the same time, there are no typical differences between the numerical performances of these gradient algorithms, either in the splitting of T + V or in the splitting of H0 + H1. In particular, compared with the former decomposition, the latter can dramatically improve the numerical accuracy. Because this extension provides a fast and high-precision method to simulate various orbital motions of n-body problems, it is worth recommending for practical computation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.