Abstract

We used the Five-hundred-meter Aperture Spherical radio Telescope (FAST) to search for the molecular emissions in the L-band between 1.0 and 1.5 GHz toward four comets, C/2020 F3 (NEOWISE), C/2020 R4 (ATLAS), C/2021 A1 (Leonard), and 67P/Churyumov-Gerasimenko during or after their perihelion passages. Thousands of molecular transition lines fall in this low-frequency range, many attributed to complex organic or prebiotic molecules. We conducted a blind search for the possible molecular lines in this frequency range in those comets and could not identify clear signals of molecular emissions in the data. Although several molecules have been detected at high frequencies of greater than 100 GHz in comets, our results confirm that it is challenging to detect molecular transitions in the L-band frequency ranges. The non-detection of L-band molecular lines in the cometary environment could rule out the possibility of unusually strong lines, which could be caused by the masers or non-LTE effects. Although the line strengths are predicted to be weak, for FAST, using the ultra-wide bandwidth receiver and improving the radio frequency interference environments would enhance the detectability of those molecular transitions at low frequencies in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.