Abstract
In this paper, we show that a simple three-dimensional quadratic vector field can have at least seven small-amplitude limit cycles, bifurcating from a Hopf critical point. This result is surprisingly higher than the Bautin's result for quadratic planar vector fields which can only have three small-amplitude limit cycles bifurcating from an elementary focus or an elementary center. The methods used in this paper include computing focus values, and solving multivariate polynomial systems using modular regular chains. In order to obtain higher-order focus values for nonplanar dynamical systems, computationally efficient approaches combined with center manifold computation must be adopted. A recently developed explicit, recursive formula and Maple program for computing the normal form and center manifold of general n-dimensional systems is applied to compute the focus values of the three-dimensional vector field.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have