Abstract

This study focuses on two Mediterranean oligotrophic high mountain lakes located in the Sierra Nevada National Park (southern Spain): Río Seco (RS) and La Caldera (LC). A combination of field measurements and laboratory experiments is used: (i) to quantify in situ settling fluxes; (ii) to study the soluble reactive phosphorus (SRP) release or uptake by settling and resuspended particles; and (iii) to discriminate between the biotic and abiotic contribution for such patterns. In general, all suspensions (lake water untreated and lake water enriched with settling and with resuspended matter) in both study lakes release significantly more SRP to the solution when biological activity was suppressed. Biological uptake from settling and resuspended matter is likely to be limited by the bacterial consumption of P. Despite of these similarities, this study has revealed notable differences in the effect of sediment resuspension on SRP dynamics in both study lakes, when simulating natural conditions (biotic and abiotic processes). While in LC, the enrichment of lake water with settling and with resuspended matter did not cause an increase in SRP concentrations in lake water, SRP concentrations in RS at the end of the experiment were significantly higher (probability P < 0.05) in lake water enriched with resuspended matter (3.2 μg/l) than in natural lake water (lower than the detection limit). Accordingly, it is reasonable to expect that sediment resuspension, which occurs more frequently in RS compared with LC, affects drastically the SRP availability in the water column in RS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.