Abstract

This paper examines the behaviour of phosphorus (P) in a lowland chalk (Cretaceous-age) stream, the upper River Kennet in southern England, which has been subject to P remediation by tertiary treatment at the major sewage treatment works in the area. The effects of treatment are examined in relation to boron, a conservative tracer of sewage effluent and in terms of the relative contributions of soluble reactive phosphorus (SRP) loads from point and diffuse sources, and in-stream SRP loads. These results indicate a baseline reduction in in-stream SRP concentrations immediately following P-treatment of approximately 72%. Subsequent high flows result in a greater contribution of diffuse inputs and increases in SRP levels relative to the initial post-treatment period. The dynamics of SRP and particulate phosphorus (PP) are examined under a wide range of river flow conditions. Given the flashy nature of near-surface runoff in the River Kennet, sub-weekly (daily automated) sampling was used to examine the dynamics in SRP and PP concentrations in response to storm events. Simple empirical models linking weekly SRP concentrations with flow were developed. The empirical models were successfully applied to the daily data, to partition TP measurements and provide an estimate of daily SRP and PP concentrations. Mass balance studies were used to examine net gains and losses along the experimental river reach and indicate large net losses (up to 60%) during the extreme low flows and high SRP concentrations prior to P-treatment, which may be linked to extensive epiphytic growth. Phosphorus dynamics and response to P-treatment are discussed in relation to hydrological controls in permeable chalk catchments and wider implications for eutrophication management are examined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call