Abstract

All-atom molecular dynamics (MD) simulations enable the study of biological systems at atomic detail, complement the understanding gained from experiment, and can also motivate experimental techniques to further examine a given biological process. This method is based on statistical mechanics; it predicts the trajectory of atoms over time by solving Newton's Laws of motion taking into account all forces. Here, we describe the use of this methodology to study the interaction between peripheral membrane proteins and a lipid bilayer. Specifically, we provide step-by-step instructions to set up MD simulations to study the binding and interaction of the amphipathic helix of Osh4, a lipid transport protein, and Thanatin, an antimicrobial peptide (AMP), with model lipid bilayers using both fully detailed lipid tails and the highly mobile membrane-mimetic (HMMM) method to enhance conformational sampling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.