Abstract

Recent experiments in function mechanism study reported that a pH low-insertion peptide (pHLIP) can insert into a zwitterionic palmitoyloleoylphosphatidylcholine (POPC) lipid bilayer at acidic pH while binding to the bilayer surface at basic pH. However, the atomic details of the pH-dependent interaction of pHLIP with a POPC bilayer are not well understood. In this study, we investigate the detailed interactions of pHLIP with a POPC bilayer at acidic and basic pH conditions as those used in function mechanism study, using all-atom molecular dynamics (MD) simulations. Simulations have been performed by employing the initial configurations, where pHLIP is placed in aqueous solution, parallel to bilayer surface (system S), partially-inserted (system P), or fully-inserted (system F) in POPC bilayers. On the basis of multiple 200-ns MD simulations, we found (1) pHLIP in system S can spontaneously insert into a POPC bilayer at acidic pH, while binding to the membrane surface at basic pH; (2) pHLIP in system P can insert deep into a POPC bilayer at acidic pH, while it has a tendency to exit, and stays at bilayer surface at basic pH; (3) pHLIP in system F keeps in an α-helical structure at acidic pH while partially unfolding at basic pH. This study provides at atomic-level the pH-induced insertion of pHLIP into POPC bilayer.

Highlights

  • The pH low-insertion peptides have received significant attention in recent years due to their ability to target acidic tissues and selectively translocate polar, cell-impermeable molecules across cell membranes [1,2]

  • The peptide at basic pH is more hydrophilic, energetically more favorable to bind to hydrophilic headgroups of POPC bilayer, whereas the pH low-insertion peptide (pHLIP) at acidic pH is more hydrophobic, energetically more favorable to stay inside the hydrophobic tail region of POPC bilayer

  • We have investigated the detailed interactions of pHLIP with POPC bilayers at acidic and basic pH conditions by performing six 200-ns all-atom molecular dynamics (MD) simulations starting from three different configurations

Read more

Summary

Introduction

The pH low-insertion peptides (pHLIPs) have received significant attention in recent years due to their ability to target acidic tissues and selectively translocate polar, cell-impermeable molecules across cell membranes [1,2]. Due to its small size, pHLIP serves as a model peptide for studying membrane protein folding and bilayer insertion. Unlike other membrane active peptides [9], pHLIP helices cause minimal disturbance to phospholipid bilayers: Namely, they do not induce membrane leakage [1,6,10]. Owing to this exceptional property, many technologies have been developed for targeting, imaging, and drug molecule delivery using pHLIP [7,8,11,12,13,14]

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.