Abstract

The somites of the vertebrate embryo are clocked out sequentially from the presomitic mesoderm (PSM) at the tail end of the embryo. Formation of each somite corresponds to one cycle of oscillation of the somite segmentation clock—a system of genes whose expression switches on and off periodically in the cells of the PSM. We have previously proposed a simple mathematical model explaining how the oscillations, in zebrafish at least, may be generated by a delayed negative feedback loop in which the products of two Notch target genes, her1 and her7, directly inhibit their own transcription, as well as that of the gene for the Notch ligand DeltaC; Notch signalling via DeltaC keeps the oscillations of neighbouring cells in synchrony. Here we subject the model to quantitative tests. We show how to read temporal information from the spatial pattern of stripes of gene expression in the anterior PSM and in this way obtain values for the biosynthetic delays and molecular lifetimes on which the model critically depends. Using transgenic lines of zebrafish expressing her1 or her7 under heat-shock control, we confirm the regulatory relationships postulated by the model. From the timing of somite segmentation disturbances following a pulse of her7 misexpression, we deduce that although her7 continues to oscillate in the anterior half of the PSM, it governs the future somite segmentation behaviour of the cells only while they are in the posterior half. In general, the findings strongly support the mathematical model of how the somite clock works, but they do not exclude the possibility that other oscillator mechanisms may operate upstream from the her7/her1 oscillator or in parallel with it.

Highlights

  • How do genes set the tempo of embryonic development? This basic question is still largely unanswered

  • We focus on one particular process, zebrafish somite formation, in which a better understanding may be attainable: previous work has identified specific genes as critical for the control of timing, and a detailed mathematical model has been proposed to explain how they could act as a timer

  • Somites—the embryonic segments of the vertebrate body—are formed sequentially, with a spacing determined by a gene expression oscillator, the segmentation clock, operating in the cells at the tail end of the embryo

Read more

Summary

Introduction

How do genes set the tempo of embryonic development? This basic question is still largely unanswered. At the tail end of the embryo, the transcripts of certain genes undergo regular coordinated cycles of production and degradation [1,2,3,4,5,6,7,8,9]. This gene expression oscillator is called the somite segmentation clock, and in each of its cycles, one additional somite is formed. The succession of cells passing through the anterior part of the PSM to begin their differentiation as somites can be likened to magnetic tape passing the recording head in a tape recorder: the periodic somite pattern represents a spatial

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.