Abstract
Sample sizes set on the basis of desired power and expected effect size are often too small to yield a confidence interval narrow enough to provide a precise estimate of a population value. Formulae are presented to achieve a confidence interval of desired width for four common statistical tests: finding the population value of a correlation coefficient (Pearson r), the mean difference between two populations (independent- and dependent-samples t tests), and the difference between proportions for two populations (chi-square for contingency tables). Use of the formulae is discussed in the context of the two goals of research: (a) determining whether an effect exists and (b) determining how large the effect is. In addition, calculating the sample size needed to find a confidence interval that captures the smallest benefit of clinical importance is addressed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.