Abstract

Let V be a simplicial toric variety of codimension r over a field of any characteristic. We completely characterize the implicial toric varieties that are set-theoretic complete intersections on binomials. In particular we prove that: 1. In characteristic zero, V is a set-theoretic complete intersection on binomials if and only jf V is a. complete intersection. Moreover, if F 1 ,…,F r ; are binomials such that I(V)= rad( F 1 , . .. ,F r ), th en I(V) = (F 1 , ... ,F r ) . We also get a geometric proof of some of the results in [9] characterizing complete intersections by gluing; semigroups. 2. In positive characteristic p, V is a set-theoretic complete intersection on binomials if and only if V is complete 1y p-glued. These results improve and complete all known results on these topics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.