Abstract

For several decades, the search for extraterrestrial intelligence (SETI) has proceeded using advanced astronomical techniques. Different strategies have been proposed for target selection for targeted searches with goals of improving the chances of successful detection of signals from technological civilizations that may inhabit planets around solar-type stars, and to minimize the chances of missing signals from unexpected sites. In this paper we demonstrate that these goals are best achieved by observing star clusters. We show that standard open clusters are not appropriate for SETI scans because their disruption time scale is shorter than the characteristic time scale for the development of a protective atmospheric layer on a habitable planet. However, the old open clusters, those older than some Gy are optimal candidates for SETI surveys as their ages are older than the likely time for intelligent civilizations to emerge and the probability of catastrophic orbital modification as a result of close encounters with other cluster stars is, in general, rather negligible. The final performance of the proposed survey can be significantly increased by using initially a radio telescope beam larger than the cluster apparent size so that the entire cluster can be observed simultaneously. Globular clusters are also good candidates from the statistical point of view but only if hypothetical civilizations located in these clusters have been able to develop astronomical engineering technologies or have been involved in (rather speculative) cosmic colonization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call