Abstract
A theory of discrete-time optimal filtering and smoothing based on convex sets of probability distributions is presented. Rather than propagating a single conditional distribution as does conventional Bayesian estimation, a convex set of conditional distributions is evolved. For linear Gaussian systems, the convex set can be generated by a set of Gaussian distributions with equal covariance with means in a convex region of state space. The conventional point-valued Kalman filter is generated to a set-valued Kalman filter consisting of equations of evolution of a convex set of conditional means and a conditional covariance. The resulting estimator is an exact solution to the problem of running an infinity of Kalman filters and fixed-interval smoothers, each with different initial conditions. An application is presented to illustrate and interpret the estimator results.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have