Abstract
We consider a notion of set-valued stochastic Lebesgue–Stieltjes trajectory integral and a notion of set-valued stochastic trajectory integral with respect to martingale. Then we use these integrals in a formulation of set-valued stochastic integral equations. The existence and uniqueness of the solution to such the equations is proven. As a generalization of set-valued case results we consider the fuzzy stochastic trajectory integrals and investigate the fuzzy stochastic integral equations driven by bounded variation processes and martingales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.