Abstract
This paper considers the nonlinear fuzzy stochastic Volterra integral equations with constant delay, which are general and include many fuzzy stochastic integral and differential equations discussed in literature. Since Doob's martingale inequality is no longer applicable to such equations, a new maximum inequality is obtained. Combining with the Picard approximation method, the existence and uniqueness of solutions to nonlinear fuzzy stochastic Volterra integral equations with constant delay are given. Moreover we prove that the solution behaves stably in the case of small changes of initial values, kernels and nonlinearities. We further develop a Euler-Maruyama (EM) scheme and prove the strong convergence of the scheme. It is shown that the strong convergence order of the EM method is 0.5 under Lipschitz condition. Moreover, the strong superconvergence order is 1 if further, the kernel h(t,s) of the stochastic term satisfies h(t,t)=0. Numerical examples demonstrated that the numerical results are consistent with the theoretical research conclusions. Furthermore, the application model of the fuzzy stochastic Volterra integral equation with constant delay in population dynamics is considered, and the exact solution of the numerical example is given in explicit form.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.