Abstract
Patient SE translation (SET) is a carcinogen in facilitating cellular growth and proliferation, and promoting tumorigenesis and metastasis. The present study was to investigate the resistance mechanisms associated with SET in paclitaxel-induced human breast cancer cells. The different expressions of SET, ATP-binding cassette (ABC) transporters and PI3K/Akt pathway between paclitaxel sensitive MCF-7/S and paclitaxel resistant MCF-7/PTX cells were identified using western blotting. We adopted plasmid transfection to upregulate SET in MCF-7/S cells and a novel SET antagonist COG112 to decrease SET in MCF-7/PTX cells. Subsequently, cell viability to paclitaxel was assessed by MTT assay and cell apoptosis was analyzed by flow cytometry. We found that levels of SET, ABC transporters and PI3K/Akt pathway were elevated in MCF-7/PTX. Upregulation of SET in MCF-7/S cells expressed resistant to paclitaxel and decreased cell apoptosis. Moreover, overexpression of SET promoted the mRNA and protein level of ABC transporters and PI3K/Akt signal pathway in MCF-7/S cells. Conversely, decreased level of SET by COG112 not only significantly sensitized MCF-7/PTX cells to paclitaxel, but also enhanced paclitaxel-induced cell apoptosis. Additionally, the levels of the ABC transporters and PI3K/Akt signal pathway were also reduced in the COG112-treated MCF-7/PTX cells. The above results demonstrated that SET was associated with paclitaxel resistance in MCF-7/PTX cells.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have