Abstract

Reachability analysis consists in computing the set of states that are reachable by a dynamical system from all initial states and for all admissible inputs and parameters. It is a fundamental problem motivated by many applications in formal verification, controller synthesis, and estimation, to name only a few. This article focuses on a class of methods for computing a guaranteed overapproximation of the reachable set of continuous and hybrid systems, relying predominantly on set propagation; starting from the set of initial states, these techniques iteratively propagate a sequence of sets according to the system dynamics. After a review of set representation and computation, the article presents the state of the art of set propagation techniques for reachability analysis of linear, nonlinear, and hybrid systems. It ends with a discussion of successful applications of reachability analysis to real-world problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call