Abstract

Hybrid system is a dynamic system that involves continuous, discrete behaviors, and the interactions between continuous physical components and discrete controllers. In this paper a hybrid modeling language (called HML) for hybrid systems is extended with templates to achieve code reuse. For the formal analysis of the corresponding hybrid system models in this modeling language, these models are translated into SMT (satisfiability modulo theories) formulas as the input to an SMT solver dReal which retains the capability of bounded reachability analysis for non-linear hybrid systems. Moreover, dReal can produce data for potential traces of hybrid systems, thus it can be employed to simulate on hybrid systems. In this paper the simulation and reachability analysis are integrated in a prototype tool (open source). We present a case study for an inverted pendulum with PID (Proportional-Integral-Derivative) controllers and a rod reactor system for temperature control, both are verified to demonstrate the efficiency of the prototype tool. We conclude that, this modeling language is capable of modeling and verification of hybrid systems based on simulation and bounded reachability analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call