Abstract

We studied the composition of the <25 μm seston size fraction as a food resource potentially available to suspension feeding ribbed mussels, Geukensia demissa, over an annual cycle in Canary Creek saltmarsh, Delaware Bay. There were significant seasonal variations in the concentration of particulate organic carbon (POC), particulate organic nitrogen (PON), and total carbohydrate, but not cellulose. The concentration of cellulose, measured by hydrolytic cellulase enzyme assay, was relatively low (seasonal range 24 to 35 μg l −1) and only comprised from 3% of total carbohydrate in May 1996 to 13% in November 1995. We used the biomass of microalgae, estimated from chlorophyll a, and abundance of free-living bacteria and heterotrophic nanoflagellates to calculate each component's equivalent carbon content. Microalgae were the most dominant carbon source (62% annually) among the four identified components (phytoplankton, bacteria, heterotrophic nanoflagellates, and cellulose) in all seasons except in August 1995 when carbon from bacteria was most abundant (55%). The annual average carbon equivalents of heterotrophic nanoflagellates and cellulose were relatively small (2 and 4%, respectively). The total concentration of POC in the seston was much greater than the carbon derived from the four identified components. The proportions that these identified components contributed to POC varied seasonally and combined only accounted for 8–24% of POC. Based on these estimates, the bulk of the POC in Canary Creek marsh was not associated with any of the four components we identified. We suggest that this uncharacterized material was some type of non-lignocellulosic, amorphous detritus of unknown utility as a food resource for ribbed mussels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call