Abstract

Sesamin, a major lignan in sesame seeds, has multiple functions such as stimulation effect of ethanol metabolism in mice and human, and prevention of ethanol-induced fatty liver in rats. However, the mechanism has not been clarified yet. The changes of gene expression were investigated in rats given 250 mg/kg of sesamin (sesamin rats) or vehicle (control rats) for three days by using a DNA microarray analysis. At 4 hr after the final ingestion, the profiles of gene expression in rat livers were compared. The analysis showed that 38 transcripts were up-regulated with a significant change of more than two-fold and eight transcripts were down-regulated with a significant change to less than half in the livers of sesamin rats versus control rats. The gene expression levels of the early stage enzymes of beta-oxidation including long-chain acyl-CoA synthetase, very long-chain acyl-CoA synthetase and carnitine palmitoyltransferase were not changed, however, those of the late stage enzymes of beta-oxidation including trifunctional enzyme in mitochondria, and acyl-CoA oxidase, bifunctional enzyme and 3-ketoacyl-CoA thiolase in peroxisomes, were significantly increased by sesamin ingestion. Also, in sesamin rats, the gene expression of aldehyde dehydrogenase was increased about three-fold, whereas alcohol dehydrogenase, liver catalase and CYP2E1 were not changed. Changes in the gene expression of alcohol- and aldehyde-metabolizing enzymes observed in a DNA microarray were also confirmed by a real-time PCR method. These results suggested that sesamin ingestion regulated the transcription levels of hepatic metabolizing enzymes for alcohol and lipids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call