Abstract
The analysis of bored piles, or drilled shafts, at the service limit state is important when foundation settlements are critical to the operation of a structure. The t–z method is a widely used soil–structure interaction model for the analysis of drilled shaft settlement. In current practice, nominal values of soil stiffness and strength parameters are used to determine settlement based upon the t–z method. However, the nominal values can vary from one designer to another, making the results somewhat inconsistent. By considering reliability-based design principles, probabilistic relationships can be incorporated into the settlement analysis of the drilled shaft, and thus design uncertainty can be quantified. Following this approach, load and resistance factor design (LRFD) procedures may be utilised and resistance factors established for use in design. Using a t–z model and the Monte Carlo simulation process, probability distributions are determined for drilled shaft capacity at the service limit state. Resistance factors are calculated based upon these relationships. The drilled shaft geometry and the shaft/soil interface parameters are varied so that their effects on the resistance factors may be understood.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.