Abstract

A race towards a more sustainable society is going on worldwide, and decreasing dependence on fossil resources in energy and transport sectors are main goals. One path to decreased oil usage is development of lightweight materials from renewable resources like bio-based composites. However, these new bio-based materials not only have to compete in mechanical performance but also have to restrain environmental loads like moisture and temperature over time. In this study, two bio-based composites have been compared to an oil-based composite in terms of long-term properties and water absorption behaviour. The long-term behaviour is determined by dynamic mechanical thermal analysis, DMTA and time temperature superposition, TTSP. The water uptake is determined by submersion of specimens into water and tracking their weight change over time. The moisture influence is characterised in form of water uptake and change in the master curves created by TTSP procedure. The results show that there is a significant difference in long-term performance between the bio-based and oil-based composites. It is realised that the bio-based composites can be a good alternative for some applications especially when taking their eco-friendly nature into account.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.