Abstract
The imbalance of microglial homeostasis is highly associated with age-related neurological diseases, where cytosolic endogenous DNA is also likely to be found. As the main medium for storing biological information, endogenous DNA could be localized to cellular compartments normally free of DNA when cells are stimulated. However, the intracellular trafficking of endogenous DNA remains unidentified. In this study, we demonstrated that nuclear DNA (nDNA) and mitochondrial DNA (mtDNA), as the components of endogenous DNA, undergo different intracellular trafficking under conditions of microglial homeostasis imbalance induced by serum starvation. Upon detecting various components of endogenous DNA in the cytoplasmic and extracellular microglia, we found that cytosolic nDNA primarily exists in a free form and undergoes degradation through the autophagy-lysosome pathway. In contrast, cytosolic mtDNA predominantly exists in a membrane-wrapped form and is trafficked through both exosome and autophagy-lysosome pathways, with the exosome pathway serving as the primary one. When the autophagy-lysosome pathway was inhibited, there was an increase in exosomes. More importantly, the inhibition of the autophagy-lysosome pathway resulted in enhanced trafficking of mtDNA through the exosome pathway. These findings unveiled the crosstalk between these two pathways in the trafficking of microglial cytosolic DNA and thus provide new insights into intervening in age-related neurological diseases.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have