Abstract

SUMMARYA hallmark of type 2 diabetes (T2D) is hepatic resistance to insulin’s glucose-lowering effects. The serum- and glucocorticoid-regulated family of protein kinases (SGK) is activated downstream of mechanistic target of rapamycin complex 2 (mTORC2) in response to insulin in parallel to AKT. Surprisingly, despite an identical substrate recognition motif to AKT, which drives insulin sensitivity, pathological accumulation of SGK1 drives insulin resistance. Liver-specific Sgk1-knockout (Sgk1Lko) mice display improved glucose tolerance and insulin sensitivity and are protected from hepatic steatosis when fed a high-fat diet. Sgk1 promotes insulin resistance by inactivating AMP-activated protein kinase (AMPK) via phosphorylation on inhibitory site AMPKαSer485/491. We demonstrate that SGK1 is dominant among SGK family kinases in regulation of insulin sensitivity, as Sgk1, Sgk2, and Sgk3 triple-knockout mice have similar increases in hepatic insulin sensitivity. In aggregate, these data suggest that targeting hepatic SGK1 may have therapeutic potential in T2D.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call