Abstract
Background Multiple sclerosis (MS) is a chronic debilitating disorder characterized by persisting damage to the brain caused by autoreactive leukocytes. Leukocyte activation is regulated by cytokines, which are readily detected in MS serum and cerebrospinal fluid (CSF). Objective Serum and CSF levels of forty-five cytokines were analyzed to identify MS diagnostic markers. Methods Cytokines were analyzed using multiplex immunoassay. ANOVA-based feature and Pearson correlation coefficient scores were calculated to select the features which were used as input by machine learning models, to predict and classify MS. Results Twenty-two and twenty cytokines were altered in CSF and serum, respectively. The MS diagnosis accuracy was ≥92% when any randomly selected five of these biomarkers were used. Interestingly, the highest accuracy (99%) of MS diagnosis was demonstrated when CCL27, IFN-γ, and IL-4 were part of the five selected cytokines, suggesting their important role in MS pathogenesis. Also, these binary classifier models had the accuracy in the range of 70-78% (serum) and 60-69% (CSF) to discriminate between the progressive (primary and secondary progressive) and relapsing-remitting forms of MS. Conclusion We identified the set of cytokines from the serum and CSF that could be used for the MS diagnosis and classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.