Abstract

Serum amyloid A (SAA) is an acute phase protein whose expression is markedly up-regulated during inflammation and infection. The physiological function of SAA is unclear. In this study, we reported that SAA promotes cellular cholesterol efflux mediated by scavenger receptor B-I (SR-BI). In Chinese hamster ovary cells, SAA promoted cellular cholesterol efflux in an SR-BI-dependent manner, whereas apoA-I did not. Similarly, SAA, but not apoA-I, promoted cholesterol efflux from HepG2 cells in an SR-BI-dependent manner as shown by using the SR-BI inhibitor BLT-1. When SAA was overexpressed in HepG2 cells using adenovirus-mediated gene transfer, the endogenously expressed SAA promoted SR-BI-dependent efflux. To assess the effect of SAA on SR-BI-mediated efflux to high density lipoprotein (HDL), we compared normal HDL, acute phase HDL (AP-HDL, prepared from mice injected with lipopolysaccharide), and AdSAA-HDL (HDL prepared from mice overexpressing SAA). Both AP-HDL and AdSAA-HDL promoted 2-fold greater cholesterol efflux than normal HDL. Lipid-free SAA was shown to also stimulate ABCA1-dependent cholesterol efflux in fibroblasts, in line with an earlier report (Stonik, J. A., Remaley, A. T., Demosky, S. J., Neufeld, E. B., Bocharov, A., and Brewer, H. B. (2004) Biochem. Biophys. Res. Commun. 321, 936-941). When added to cells together, SAA and HDL exerted a synergistic effect in promoting ABCA1-dependent efflux, suggesting that SAA may remodel HDL in a manner that releases apoA-I or other efficient ABCA1 ligands from HDL. SAA also facilitated efflux by a process that was independent of SR-BI and ABCA1. We conclude that the acute phase protein SAA plays an important role in HDL cholesterol metabolism by promoting cellular cholesterol efflux through a number of different efflux pathways.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.