Abstract

Accurate point-of-care (POC) analysis of cancer markers is the essence in the comprehensive early screening and treatment of cancer. Dual-mode synchronous detection is one of the effective approaches to reduce the probability of false negatives or false positives. As a result, this can greatly improve the accuracy of diagnosis. In this work, a surface-enhanced Raman scattering (SERS)-temperature dual-mode T-type lateral flow strip was fabricated to direct and simultaneous POC detection of total and free prostate-specific antigens (t-PSA and f-PSA) in blood. With the advantage of high stability of T-type lateral flow strip and simultaneous acquirement of assay results for t-PSA and f:t PSA ratio, the proposed method has high accuracy in the diagnosis of prostate cancer, especially in the diagnostic gray zone between 4.0 and 10.0 ng/mL. The SERS-temperature dual-signal has a good linear correlation with either f-PSA or t-PSA. To evaluate the clinical diagnostic performance of the proposed method, spiked human serum samples and the whole blood sample were analyzed. The assay results showed good recovery, and compared with traditional electrochemiluminescence immunoassay (ECLIA) method (t-PSA: 43.151; f/t ratio: 0.08), the results obtained by the proposed method were similar (t-PSA: 40.15 (SERS), 36.21 (temperature); f/t ratio: 0.08 (SERS), 0.08 (temperature), but the detection time (15 min) and cost ($0.05) had been greatly reduced. Therefore, the proposed SERS-temperature synchronous dual-mode T-type lateral flow strip has a strong application potential in the field of accurate large-scale diagnostics of prostate cancer on-site by simultaneous POC detection of t-PSA and f-PSA in blood.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call