Abstract

Consistent left-right (LR) asymmetry is a fascinating problem in developmental and evolutionary biology. Conservation of early LR patterning steps among vertebrates as well as involvement of nonprotein small-molecule messengers are very poorly understood. Serotonin (5-HT) is a key neurotransmitter with crucial roles in physiology and cognition. We tested the hypothesis that LR patterning required prenervous serotonin signaling and characterized the 5-HT pathway in chick and frog embryos. A pharmacological screen implicated endogenous signaling through receptors R3 and R4 and the activity of monoamine oxidase (MAO) in the establishment of correct sidedness of asymmetric gene expression and of the viscera in Xenopus embryos. HPLC and immunohistochemistry analysis indicates that Xenopus eggs contain a maternal supply of serotonin that is progressively degraded during cleavage stages. Serotonin's dynamic localization in frog embryos requires gap junctional communication and H,K-ATPase function. Microinjection of loss- and gain-of-function constructs into the right ventral blastomere randomizes asymmetry. In chick embryos, R3 and R4 activity is upstream of the asymmetry of Sonic hedgehog expression. MAO is asymmetrically expressed in the node. Serotonin is present in very early chick and frog embryos. 5-HT pathway function is required for normal asymmetry and is upstream of asymmetric gene expression. The microinjection data reveal asymmetry existing in frog embryos by the 4-cell stage and suggest novel intracellular 5-HT mechanisms. These functional and localization data identify a novel role for the neurotransmitter serotonin and implicate prenervous serotonergic signaling as an obligate aspect of very early left-right patterning conserved to two vertebrate species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.