Abstract
Central serotonin (5-HT) metabolism during embryogenesis and a 3-day post-hatching period was analyzed using high performance liquid chromatography in the directly developing frog, Eleutherodactylus coqui. This anuran bypasses the free-swimming larval stage and embryos hatch as miniature frogs in the adult phenotype. During embryogenesis and for a short time immediately after hatching, male E. coqui provide paternal care by brooding and guarding eggs/embryos to prevent desiccation and predation. Serotonin and its catabolite, 5-HIAA, were measured from whole brain during embryogenesis and at 3 days post-hatch to identify critical periods in 5-HT development and to determine the relationship between 5-HT and life history events such as hatching and frog dispersal from the nest site. Serotonergic activity was highest during the early-mid embryonic stages as indicated by the ratio of 5-HIAA/5-HT, a general indicator of turnover and metabolism. There were significant increases in tissue concentrations of 5-HT during the latest or terminal embryonic stage, just prior to hatching, and also at 3 days post-hatch, shortly before neonates disperse into the rainforest. These two increases probably represent different functional requirements during development. The first may occur as a result of the surge of development in the 5-HT system during late embryogenesis that occurs in E. coqui and the second may be from the increase demand in sensory and motor neural development required before dispersal from the nest site.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have