Abstract
The basolateral nuclear complex of the amygdala (BLC) receives a dense serotonergic innervation that appears to play a critical role in the regulation of mood and anxiety. However, little is known about how serotonergic inputs interface with different neuronal subpopulations in this region. To address this question, dual-labeling immunohistochemical techniques were used at the light and electron microscopic levels to examine inputs from serotonin-immunoreactive (5-HT+) terminals to different neuronal subpopulations in the rat BLC. Pyramidal cells were labeled by using antibodies to calcium/calmodulin-dependent protein kinase II, whereas different interneuronal subpopulations were labeled by using antibodies to a variety of interneuronal markers including parvalbumin (PV), vasoactive intestinal peptide (VIP), calretinin, calbindin, cholecystokinin, and somatostatin. The BLC exhibited a dense innervation by thin 5-HT+ axons. Electron microscopic examination of the anterior basolateral nucleus (BLa) revealed that 5-HT+ axon terminals contained clusters of small synaptic vesicles and a smaller number of larger dense-core vesicles. Serial section reconstruction of 5-HT+ terminals demonstrated that 76% of these terminals formed synaptic junctions. The great majority of these synapses were symmetrical. The main targets of 5-HT+ terminals were spines and distal dendrites of pyramidal cells. However, in light microscopic preparations it was common to observe apparent contacts between 5-HT+ terminals and all subpopulations of BLC interneurons. Electron microscopic analysis of the BLa in sections dual-labeled for 5-HT/PV and 5-HT/VIP revealed that many of these contacts were synapses. These findings suggest that serotonergic axon terminals differentially innervate several neuronal subpopulations in the BLC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.