Abstract

In preclinical studies serotonin stimulates and dopamine inhibits tumour growth and angiogenesis. Information regarding serotonin and dopamine receptor (5-HTR and DRD) expression in human cancers is limited. Therefore, we screened a large tumour set for receptor mRNA overexpression using functional genomic mRNA (FGmRNA) profiling, and we analysed protein expression and location of 5-HTR1B, 5-HTR2B, DRD1, and DRD2 with immunohistochemistry in different tumour types. With FGmRNA profiling 11,756 samples representing 43 tumour types were compared to 3,520 normal tissue samples to analyse receptor overexpression. 5-HTR2B overexpression was present in many tumour types, most frequently in uveal melanomas (56%). Receptor overexpression in rare cancers included 5-HTR1B in nasopharyngeal carcinoma (17%), DRD1 in ependymoma (30%) and synovial sarcoma (21%), and DRD2 in astrocytoma (13%). Immunohistochemistry demonstrated high 5-HTR2B protein expression on melanoma and gastro-intestinal stromal tumour cells and endothelial cells of colon, ovarian, breast, renal and pancreatic tumours. 5-HTR1B expression was predominantly low. High DRD2 protein expression on tumour cells was observed in 48% of pheochromocytomas, and DRD1 expression ranged from 14% in melanoma to 57% in renal cell carcinoma. In conclusion, 5-HTR1B, 5-HTR2B, DRD1, and DRD2 show mRNA overexpression in a broad spectrum of common and rare cancers. 5-HTR2B protein is frequently highly expressed in human cancers, especially on endothelial cells. These findings support further investigation of especially 5HTR2B as a potential treatment target.

Highlights

  • Serotonin and dopamine are biogenic amines, which are produced in the central nervous system and gastrointestinal tract.Electronic supplementary material The online version of this article contains supplementary material, which is available to authorized users.Throughout the body, they are transported by platelets

  • Research demonstrated that dopamine inhibits angiogenesis and thereby tumour growth in animal models of colon cancer, ovarian cancer, and breast cancer via activation of dopamine receptor D2 (DRD2) [6, 7]

  • Contradictory results have been published for dopamine receptor D1 (DRD1), as both inhibition as well as stimulation of tumour growth has been reported upon receptor activation in animal models of ovarian cancer and breast cancer [6, 8, 9]

Read more

Summary

Introduction

Serotonin stimulates tumour angiogenesis via activation of serotonin receptor 1B (5HTR1B) and serotonin receptor 2B (5-HTR2B) [3,4,5]. Research demonstrated that dopamine inhibits angiogenesis and thereby tumour growth in animal models of colon cancer, ovarian cancer, and breast cancer via activation of dopamine receptor D2 (DRD2) [6, 7]. Contradictory results have been published for dopamine receptor D1 (DRD1), as both inhibition as well as stimulation of tumour growth has been reported upon receptor activation in animal models of ovarian cancer and breast cancer [6, 8, 9]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.