Abstract

Although dysesthesia is one of the most serious problems in patients with spinal cord injury, most of them being unresponsive to conventional treatments. In this study, we established a rat thoracic spinal cord mild-compression model that revealed thermal hyperalgesia in the hind limb. The thoracic spinal cord was compressed gently, using a 20 g weight for 20 min. The withdrawal latency of the thermal stimulation of the bilateral hind-limb was monitored using Hargreaves’ Plantar test apparatus. In this model, thermal-hyperalgesia was observed for 1 week after the injury. The spinal cord injury-induced thermal-hyperalgesia was mimicked by the intrathecal application of metergoline, a non-selective 5-HT antagonist, 1-(2-methoxyphenyl)-4-[4-(2-phthalimido) butyl]-piperazine hydrobromide (NAN190), a selective 5-HT1 antagonist, and 3-tropanyl-3,5-dichlorobenzoate (MDL72222), a selective 5-HT3 antagonist. Intraperitoneal application of fluvoxamine maleate, a selective serotonin reuptake inhibitor, reduced the intensity of hyperalgesia induced by spinal cord injury. The inhibitory effect of fluvoxamine maleate on thermal hyperalgesia was prevented by the application of the aforementioned nonselective or selective 5-HT receptor antagonists. Intrathecal application of fluvoxamine maleate and selective 5-HT receptor agonists, i.e., 8-hydroxy-2-(di-n-proplyamino)-tetralin hydrobromide (8-OH-DPAT: 5HT-1 selective) and 2-methyl-5-hydroxytryptamine maleate (2-m-5-HT: 5HT-3 selective), inhibited the spinal cord injury-induced hyperalgesia. These results suggest that the change in the descending serotonergic signal plays an important role in hyperalgesia after the spinal cord injury, and that the application of selective serotonin reuptake inhibitors will be one of the candidates for new therapeutic methods against post-spinal cord injury dysesthesia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call