Abstract

Elastin, an elastic extracellular structural protein, is a polymer comprised of soluble tropoelastin (TE) monomers that are joined by covalent cross-links and become insoluble. In cultured vascular smooth muscle cells, the steady-state level of TE mRNA is influenced by soluble elastin moieties in the culture medium, either TE or its fragmentation products. We have hypothesized that an enzyme-mediated proteolytic event may modulate the quantities of TE and its fragmentation products in the culture medium of mesenchymal cells, and thereby indirectly regulate the steady-state level of TE mRNA. Neonatal rat lung fibroblasts were cultured in the presence or absence of the serine proteinase inhibitor, aprotinin, and the quantities of soluble elastin and TE mRNA were analyzed. Exposures to aprotinin lasting up to 12 h increased the soluble elastin content of the culture medium. The increase in the soluble elastin content did not reflect an increase in TE mRNA, which diminished after exposures for 12 h or longer. The decrease in TE mRNA resulted from a decrease in its half-life, rather than a decrease in the rate of TE gene transcription. Aprotinin did not reduce TE mRNA in plasminogen-depleted cultures, but the effect of aprotinin was evident when purified plasminogen was added back to the cultures. Therefore, a serine proteinase, possibly plasmin, may participate in a feedback mechanism and modulate the quantity of TE in lung fibroblast cultures. This mechanism may help ensure that intracellular TE synthesis occurs in tandem with extracellular elastin deposition and cross-linking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call