Abstract

Miniaturization of high voltage power converters is severely limited by the availability of fast-switching, low-loss high-voltage diodes. This paper explores techniques for using discrete low-voltage diodes in series as one high voltage diode. We identify that when series connecting diodes, the parasitic capacitance from the physical diode interconnections to common can result in voltage and temperature imbalance among the diodes, along with increased loss. We quantify the imbalance and propose two related compensation techniques. To validate the approaches, a full-bridge rectifier is tested with each branch consisting of four 3.3 kV SiC diodes in series. Experimental results showcase the imbalance and demonstrate the effectiveness of the compensation techniques. Additionally, we characterize the performance of a range of diodes for use in high-frequency, high-voltage converters. The proposed technique and evaluation results will be valuable for the design of lightweight and miniaturized high voltage power converters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.