Abstract

High voltage wide bandgap (WBG) semiconductor devices like the 15kV SiC MOSFET have attracted great attentions because of its potential applications in high voltage and high frequency power converters. However, these devices are not commercially available at the moment and their high cost due to expensive material growth and fabrication may limit their widespread adoption in the future. In this paper, a 15kV/40A three terminal power switch, the FREEDM Super-Cascode, is reported for the first time which is based on series connection of 1.2kV SiC power devices. The design and operation principle of the FREEDM Super-Cascode are introduced and the performance including the static blocking capability, conduction characteristics over a wide range of temperatures, and dynamic switching performances are analyzed. In addition, the thermal resistance of the FREEDM Super-Cascode is measured and the power dissipation capability is projected. The FREEDM Super-Cascode costs only one third of the estimated high voltage SiC MOSFETs, and will facilitate early applications of SiC in very high voltage and high frequency power converters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call