Abstract
This work considers space-time channel coding for systems with multiple-transmit and a single-receive antenna, over space uncorrelated block-fading (quasi-static) channels. Analysis of the outage probability over such channels reveals the existence of a threshold phenomenon. The outage probability can be made arbitrary small by increasing the number of transmit antennas, only if the E <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">b</sub> /N/sub 0/ is above a threshold which depends on the coding rate. Furthermore, it is shown that when the number of transmit antennas is increased, the /spl epsi/-capacity of a block-fading Rayleigh channel tends to the Shannon capacity of an additive white Gaussian noise channel. This paper also presents space-time codes constructed as a serial concatenation of component convolutional codes separated by an interleaver. These schemes provide full transmit diversity and are suitable for iterative decoding. The rate of these schemes is less than 1 bit/s/Hz, but can be made arbitrary close to 1 bit/s/Hz by the use of Wyner-Ash codes as outer components. Comparison of these schemes with structures from literature shows that performance gains can be obtained at the expense of a small decrease in rate. Computer simulation results over block-fading Rayleigh channels show that the frame-error rate of several of these schemes is within 2-3 dB from the theoretical outage probability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.