Abstract

Invasive populations often experience founder effects: a loss of genetic diversity relative to the source population, due to a small number of founders. Even where these founder effects do not impact colonization success, theory predicts they might affect the rate at which invasive populations expand. This is because secondary founder effects are generated at advancing population edges, further reducing local genetic diversity and elevating genetic load. We show that in an expanding invasive population of the Asian honey bee (Apis cerana), genetic diversity is indeed lowest at range edges, including at the complementary sex determiner, csd, a locus that is homozygous-lethal. Consistent with lower local csd diversity, range edge colonies had lower brood viability than colonies in the range centre. Further, simulations of a newly-founded and expanding honey bee population corroborate the spatial patterns in mean colony fitness observed in our empirical data and show that such genetic load at range edges will slow the rate of population expansion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call