Abstract
The objective of the study was to assess predictive value of serial diffusion tensor MRI (DTI) for the white matter injury and neurodevelopmental outcome in a cohort of premature infants. Twenty-four infants less than 32 weeks’ gestation were stratified to a control group (n = 11), mild brain injury with grades 1–2 of intraventricular hemorrhage (n = 6) and severe brain injury with grades 3–4 intraventricular hemorrhage (n = 4). Serial DTI studies were performed at around 30 and 36 weeks’ gestation. Fractional anisotropy (FA) and apparent diffusion coefficient were calculated. Twelve infants were followed up for developmental outcome. Developmental testing was performed with the Bayley Scales of Infant Development to obtain psychomotor index (Performance Developmental Index). Apparent diffusion coefficient was higher in the severe injury group at the second MRI in the central and occipital white matter, and corona radiata; FA was lower in optic radiation compared to controls. Performance Developmental Indexscore correlated with FA on the scan taken at the 30th week and inversely with the change of FA between scans in internal capsule and occipital white matter. A low value of FA at 30 weeks and a higher change of FA predicted less favorable motor outcome at 2 years and suggests that early subtle white matter injury can be detected in premature infants even without obvious signs of injury.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have