Abstract
In order to bring stimuli of interest into our central field of vision, we perform saccadic eye movements. After every saccade, the error between the predicted and actual landing position is monitored. In the laboratory, artificial post-saccadic errors are created by displacing the target during saccade execution. Previous research found that even a single post-saccadic error induces immediate amplitude changes to minimize that error. The saccadic amplitude adjustment could result from a recalibration of the saccade target representation. We asked if recalibration follows an integration scheme in which the impact magnitude of the previous post-saccadic target location depends on the certainty of the current target. We asked subjects to perform saccades to Gaussian blobs as targets, the visuospatial certainty of which we manipulated by changing its spatial constant. In separate sessions, either the pre-saccadic or post-saccadic target was uncertain. Additionally, we manipulated the contrast to further decrease certainty, changing the spatial constant mid-saccade. We found saccade-by-saccade amplitude reductions only with a currently uncertain target, a previously certain one, and a constant target contrast. We conclude that the features of the pre-saccadic target (i.e., size and contrast) determine the extent to which post-saccadic error shapes upcoming saccade amplitudes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.