Abstract
Recently, it was discovered that serglycin, a hematopoietic cell proteoglycan, is the major proteoglycan expressed and constitutively secreted by multiple myeloma (MM) cells. High levels of serglycin are present in the bone marrow aspirates of at least 30% of newly diagnosed MM patients. However, its contribution to the pathophysiology of MM is unknown. Here, we show that serglycin knockdown (by ∼85% compared with normal levels), using lentiviral shRNA, dramatically attenuated MM tumor growth in mice with severe combined immunodeficiency. Tumors formed from cells deficient in serglycin exhibited diminished levels of hepatocyte growth factor expression and impaired development of blood vessels, indicating that serglycin may affect tumor angiogenesis. Furthermore, knockdown of serglycin significantly decreased MM cell adhesion to bone marrow stromal cells and collagen I. Even though serglycin proteoglycan does not have a transmembrane domain, flow cytometry showed that serglycin is present on the MM cell surface, and attachment to the cell surface is, at least in part, dependent on its chondroitin sulfate side chains. Co-precipitation of serglycin from conditioned medium of MM cells using a CD44-Fc chimera suggests that CD44 is the cell surface-binding partner for serglycin, which therefore may serve as a major ligand for CD44 at various stages during myeloma progression. Finally, we demonstrate that serglycin mRNA expression in MM cells is up-regulated by activin, a predominant cytokine among those increased in MM patients with osteolytic lesions. These studies provide direct evidence for a critical role for serglycin in MM pathogenesis and show that targeting serglycin may provide a novel therapeutic approach for MM.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have