Abstract

The regioselective benzoyloxylation process involves stirring a mixture of phenyl/benzyl-sulfanyl/selenylethanoate 1a-c with appropriate oxidant [benzoyl peroxide (BPO) 2a/ m-chloroperbenzoic acid (m-CPBA) 2b /bis(p-methoxybenzoyl peroxide) (BPM-BPO) 2c] under catalysis of hydrated copper acetate in toluene at 60 °C/RT. Regioselective C–H functionalization of esters 1a-c leads to benzoyloxy substituted phenyl/benzyl-sulfanyl/selenylbisesters 3a-g in good to excellent yields (80–95%). Variably substituted trans-3-phenylsulfanyl-β-lactams 4 employed for C3-H functionalization with BPO 2a generates diastereoisomeric mixture of trans- and cis-3-benzoyloxy-3-(phenylsulfanyl)-β-lactams 5 and 6 as major and minor isomers after efficient column chromatographic purification. The structural confirmation was done using IR, 1H NMR, 13C NMR, DEPT-90 NMR spectroscopic analysis and CHNS elemental analysis. In vitro antibacterial and antifungal evaluations on bisesters suggest benzylselenyl-bisester 3c as potent antimicrobial agent. Out of trans- and cis-3-benzoyloxy-β-lactams 5a and 6a, the trans isomer 5a was active against all microbial strains whereas the cis isomer 6a was completely inactive.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call