Abstract

For safety assessment of a steam generator in sodium-cooled fast reactors, a computational fluid dynamics code SERAPHIM, in which a compressible multicomponent multiphase flow with sodium-water chemical reaction is computed, has been developed. The original SERAPHIM code is based on the finite difference method. In this study, unstructured mesh-based numerical method was developed and introduced into the SERAPHIM code to advance a numerical accuracy for a complex-shaped domain including multiple heat transfer tubes. The multiphase flow under the tube failure accident is calculated by the multi-fluid model considering compressibility. Validity of the unstructured mesh-based SERAPHIM code was investigated through the analysis of an under-expanded jet experiment, which is a key phenomenon in the tube failure accident. The calculated pressure profile showed good agreement with the experimental data. Numerical analysis of water vapor discharging into liquid sodium was also performed. The calculated temperature field agreed with the existing experimental knowledge. It was demonstrated that the proposed numerical method could be applicable to evaluation of the sodium-water reaction phenomenon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call