Abstract

In this article, a sequential Vce(T) method with separated gate controller is proposed to measure the junction temperature distribution within press-pack insulated gate bipolar transistors (PP IGBTs), which is not possible for traditional temperature measurement methods due to the enclosed structure and external clamping force of the pressure-type package. This proposed method is integrated into a standard dc power cycling test and the steady-state junction temperature distribution is obtained to validate its applicability and effectiveness. The measured junction temperature exhibited a bathtub type distribution within PP IGBTs. The root cause is the deformation of the copper plate, which was also discussed by the finite-element simulation in previous literature. Furthermore, the influence of static characteristic dispersion is excluded by the chip transposition and the thermomechanical coupling effect is confirmed to be the dominant factor of this junction temperature distribution. Finally, the influence of heating current and heating time on junction temperature distribution is also investigated by the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.