Abstract

Lung metastatic breast cancer is a leading cause of cancer-related death in women and difficult to treat due to non-specific drug delivery. Herein a sequential targeting dual-responsive magnetic nanoparticle was fabricated, where Fe3O4 nanoparticle was used as magnetic core, then sequentially coated with tetraethyl orthosilicate, bis[3-(triethoxy-silyl)propyl] tetrasulfide, and 3-(trimethoxysilyl) propylmethacrylate to afford -C = C- on the surface for further polymerisation with acrylic acid, acryloyl-6-ethylenediamine-6-deoxy-β-cyclodextrin using N, N-bisacryloylcy- stamine as cross-linker, obtaining pH/redox dual-responsive magnetic nanoparticle (MNPs-CD) to delivery doxorubicin (DOX) for suppressing lung metastatic breast cancer. Our results suggested DOX-loaded nanoparticle could target the lung metastases site by sequential targeting, in which they first be delivered to the lung and even the metastatic nodules through size-driven, electrical interaction, and magnetic field-guided mechanisms, then be effectively internalised into the cancer cells followed by intelligently triggering DOX release. MTT analysis demonstrated DOX-loaded nanoparticle exhibited high anti-tumour activity against 4T1 and A549 cells. 4T1 tumour-bearing mice were employed to confirm the higher specific accumulation in lung and improved anti-metastatic therapy efficiency of DOX by focussing an extracorporeal magnetic field on the biological target. Our findings suggested the as-proposed dual-responsive magnetic nanoparticle offered a prerequisite to inhibit lung metastasis of breast cancer tumours.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call