Abstract

Phototherapy can cause autophagy while killing tumour cells, leading to tumour recurrence and metastasis. Here, we constructed a laser and enzyme dual responsive nanodrug delivery system Tf-Te@CTSL-HCQ (TT@CH) to precisely regulate autophagy in synergy with phototherapy to inhibit the proliferation and metastasis of melanoma. Firstly, transferrin (Tf) was used as a nanoreactor to synthesise phototherapy agent Tf-Te by the biological template mineralisation method. Then, the thermosensitive liposome modified with FAP-α-responsive peptide (CAP) was used as a carrier to encapsulate autophagy inhibitor hydroxychloroquine (HCQ) and Tf-Te, to obtain an intelligent TT@CH delivery system. Once arriving at the tumour site, TT@CH can be cleaved by FAP-α overexpressed on cancer-associated fibroblasts (CAFs), and release Tf-Te and HCQ. Then Tf-Te can target melanoma cells and exert PTT/PDT anti-tumour effect. What’s more, hyperpyrexia induced by PTT can further promote drugs release from TT@CH. Meanwhile, HCQ simultaneously inhibited autophagy of CAFs and melanoma cells, and down-regulated IL-6 and HMGB1 secretion, thus effectively inhibiting melanoma metastasis. Pharmacodynamic results exhibited the best anti-tumour effect of TT@CH with the highest tumour inhibition rate of 91.3%. Meanwhile, lung metastatic nodules of TT@CH treated mice reduced by 124.33 compared with that of mice in control group. Overall, TT@CH provided an effective therapy strategy for melanoma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.