Abstract

The capacity of normal human cells to regulate DNA-repair pathways was examined. Synchronous populations of WI-38 human diploid fibroblasts were used to determine whether base-excision repair was increased as a function of the cell cycle. 2 parameters of the base-excision repair pathway were examined: (1) The induction of the DNA-repair enzyme uracil DNA glycosylase which functions in an initial step in base excision repair: (2) cell-mediated base-excision repair as measured by unscheduled DNA synthesis after exposure to sodium bisulfite or to methyl methanesulfonate. The glycosylase activity was increased 5-fold during cell proliferation; unscheduled DNA synthesis was enhanced 4- to 30-fold in a similar fashion. Equivalent results were observed where repair replication was quantitated using density-gradient analysis in the absence of hydroxyurea. The increase of the activity of the uracil DNA glycosylase and the enhancement of DNA repair occurred prior to the induction of DNA replication. Furthermore, at the maximal stimulation of DNA replication both glycosylase activity and DNA repair had substantially diminished. As the cells entered the second cell cycle, the glycosylase activity was again increased and then was again diminished. These results suggest that human cells actively modulate this DNA-repair pathway. The temporal stimulation of base-excision repair suggests the possibility that a DNA-repair complex may be formed prior to DNA replication to prescreen DNA and thus ensure the transfer of the correct genetic information to daughter cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.