Abstract
The regulation of nucleotide excision repair and base excision repair by normal and repair deficient human cells was determined. Synchronous cultures of WI-38 normal diploid fibroblasts and Xeroderma pigmentosum fibroblasts (complementation group D) (XP-D) were used to investigate whether DNA repair pathways were modulated during the cell cycle. Two criteria were used: (1) unscheduled DNA synthesis (UDS) in the presence of hydroxyurea (HU) after exposure to UV light or after exposure to N-acetoxy-acetylaminofluorene ( N-AcO-AAF) to quantitate nucleotide excision repair or UDS after exposure to methylmethane sulfonate (MMS) to measure base excision repair; (2) repair replication into parental DNA in the absence of HU after exposure to UV light. Nucleotide excision repair after UV irradiation was induced in WI-38 fibroblasts during the cell cycle reaching a maximum in cultures exposed 14–15 h after cell stimulation. Similar results were observed after exposure to N-AcO-AAF. DNA repair was increased 2–4-fold after UV exposure and was increased 3-fold after N-AcO-AAF exposure. In either instance nucleotide excision repair was sequentially stimulated prior to the enhancement of base excision repair which was stimulated prior to the induction of DNA replication. In contrast XP-D failed to induce nucleotide excision repair after UV irradiation at any interval in the cell cycle. However, base excision repair and DNA replication were stimulated comparable to that enhancement observed in WI-38 cells. The distinctive induction of nucleotide excision repair and base excision repair prior to the onset of DNA replication suggests that separate DNA repair complexes may be formed during the eucaryotic cell cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.